Combinations of Theories for Decidable Fragments of First-Order Logic

نویسنده

  • Pascal Fontaine
چکیده

The design of decision procedures for first-order theories and their combinations has been a very active research subject for thirty years; it has gained practical importance through the development of SMT (satisfiability modulo theories) solvers. Most results concentrate on combining decision procedures for data structures such as theories for arrays, bitvectors, fragments of arithmetic, and uninterpreted functions. In particular, the well-known Nelson-Oppen scheme for the combination of decision procedures requires the signatures to be disjoint and each theory to be stably infinite; every satisfiable set of literals in a stably infinite theory has an infinite model. In this paper we consider some of the best-known decidable fragments of first-order logic with equality, including the Löwenheim class (monadic FOL with equality, but without functions), Bernays-Schönfinkel-Ramsey theories (finite sets of formulas of the form ∃∗∀∗φ, where φ is a functionfree and quantifier-free FOL formula), and the two-variable fragment of FOL. In general, these are not stably infinite, and the Nelson-Oppen scheme cannot be used to integrate them into SMT solvers. Noticing some elementary results about the cardinalities of the models of these theories, we show that they can nevertheless be combined with almost any other decidable theory.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automating Separation Logic Using SMT

Separation logic (SL) has gained widespread popularity because of its ability to succinctly express complex invariants of a program’s heap configurations. Several specialized provers have been developed for decidable SL fragments. However, these provers cannot be easily extended or combined with solvers for other theories that are important in program verification, e.g., linear arithmetic. In t...

متن کامل

Combining Theories: The Ackerman and Guarded Fragments

Combination of decision procedures is at the heart of Satisfiability Modulo Theories (SMT) solvers. It provides ways to compose decision procedures for expressive languages which mix symbols from various decidable theories. Typical combinations include (linear) arithmetic, uninterpreted symbols, arrays operators, etc. In [7] we showed that any first-order theory from the Bernays-Schönfinkel-Ram...

متن کامل

Automating Separation Logic with Trees and Data

Separation logic (SL) is a widely used formalism for verifying heap manipulating programs. Existing SL solvers focus on decidable fragments for list-like structures. More complex data structures such as trees are typically unsupported in implementations, or handled by incomplete heuristics. While complete decision procedures for reasoning about trees have been proposed, these procedures suffer ...

متن کامل

Complete Instantiation for Quantified Formulas in Satisfiabiliby Modulo Theories

Quantifier reasoning in Satisfiability Modulo Theories (SMT) is a long-standing challenge. The practical method employed in modern SMT solvers is to instantiate quantified formulas based on heuristics, which is not refutationally complete even for pure first-order logic. We present several decidable fragments of first order logic modulo theories. We show how to construct models for satisfiable ...

متن کامل

Complete instantiation for quantified formulas in Satisfiability Modulo Theories

Quantifier reasoning in Satisfiability Modulo Theories (SMT) is a long-standing challenge. The practical method employed in modern SMT solvers is to instantiate quantified formulas based on heuristics, which is not refutationally complete even for pure first-order logic. We present several decidable fragments of first order logic modulo theories. We show how to construct models for satisfiable ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009